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Abstract
Malware attacks typically effect damage by abusing operating sys-
tem resources (e.g., the file system) that are exposed via system
API calls. A method of using automated binary code-rewriting to
monitor API calls and their arguments is presented and evaluated.
Unlike traditional monitoring approaches, the framework requires
no modification of the operating system, has no effect upon trusted
processes, and preserves the behavior of most complex x86 native
code binaries generated by mainstream compilers, including bina-
ries that are object-oriented, graphical, contain callbacks, and use a
mixture of static and dynamic linking. A separate verifier certifies
that rewritten binaries cannot circumvent the monitor at runtime, al-
lowing the binary-rewriter to remain untrusted. An implementation
for Microsoft Windows demonstrates that the technique is effective
and practical for real-world systems and architectures.

Categories and Subject Descriptors D.4.6 [Operating Systems]:
Security and Protection—Access controls; D.3.4 [Programming
Languages]: Processors—Code generation; D.2.4 [Software En-
gineering]: Software/Program Verification—Validation

General Terms Languages, Security

Keywords binary rewriting, sandboxing, software fault isolation

1. Introduction
Reference monitoring is a well-established paradigm for enforcing
safety policies by mediating access to security-relevant system re-
sources. For example, most modern operating systems implement
reference monitors that limit access to file system resources based
on access control lists. Unfortunately, reference monitors imple-
mented at the operating system level have the disadvantage that
they cannot be easily modified by third parties to enforce new poli-
cies. Doing so typically requires access to operating system source
code that may be proprietary and therefore unavailable, or write
access to restricted operating system binaries. Even when these are
available, modified operating systems can be difficult to maintain
across OS revisions and patches, and the modifications can poten-
tially impact even trusted processes, causing compatibility prob-
lems.

An attractive alternative is In-lined Reference Monitoring [19],
wherein a binary rewriter in-lines the reference monitor directly
into the binary code of untrusted processes. In-lined Reference
Monitors (IRM’s) can be implemented without modifying the op-
erating system, and with minimal system privileges (e.g., write ac-
cess to the untrusted program file but not to the system binaries).
Furthermore, IRM’s constrain the behavior of untrusted processes
without affecting the behavior or performance of other processes,
and are therefore well-suited for enforcing specialized, application-
specific policies.

However, most binary rewriting algorithms must make strong
assumptions about untrusted code in order to successfully pre-
serve the behavior of policy-adherent programs and prevent policy-
violating behavior of malicious programs. For example, most IRM
systems rely upon control-flow and data encapsulation properties
imposed by an underlying virtual machine to prevent malicious
code from circumventing in-lined security guards or modifying in-
jected IRM variables. For this reason, a majority of IRM imple-
mentations target type-safe bytecode languages, such as Java (e.g.,
[2, 3, 9]), ActionScript [22], or .NET CIL [11], which impose such
constraints at the VM level. This makes these systems inapplica-
ble to the detection and prevention of most conventional malware,
since the vast majority of malware is expressed as untyped native
code. Applying IRM technology to untyped domains has therefore
remained a longstanding challenge in the field.

We address this challenge through the design and implementa-
tion of an IRM framework that targets native x86 machine code
binaries on Microsoft Windows systems. The framework auto-
matically transforms native code binaries so as to redirect system
API calls through a trusted policy-enforcement library. The policy-
enforcement library therefore has access to all API calls and their
arguments before (and after) they are serviced, and can use this
information to enforce arbitrary safety policies over histories of
these security-relevant events. The binary-rewriting algorithm is
carefully crafted so as to accommodate a large class of difficult fea-
tures commonly found in real x86 executables, including computed
jumps, dynamic linking, code sections that interleave executable
code with static data, and untrusted callback functions invoked by
the operating system. Experiments show that it successfully pre-
serves the behavior of non-malicious, real-world Windows binaries
obtained from a variety of different mainstream compilers.

A small, trusted verifier shifts the significant complexity of
the rewriting system out of the trusted computing base by inde-
pendently certifying that rewritten binaries cannot circumvent the
policy-enforcement library. Thus, binaries that pass verification are
guaranteed to be safe to execute. While reflective code can change
its behavior in response to rewriting, the verifier ensures that any
such behavioral changes cannot effect policy-violations.

Section 2 begins with an overview of the system architecture,
including a discussion of various features of x86 Windows binaries
that are important for understanding the system implementation.
The binary-rewriting and verification algorithms that are the focus
of the research are presented in Section 3. Experimental results that
demonstrate the practicality of the approach are presented in Sec-
tion 4, followed by a more systematic treatment of the system as-
sumptions and limitations in Section 5. Finally, Section 6 discusses
related work and Section 7 concludes.
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Figure 1. Windows API call procedure

2. System Overview
Attackers in our model submit arbitrary x86 binary code for ex-
ecution on victim systems. Neither attackers nor defenders are
assumed to have kernel-level (ring 0) privileges on the system.
Attacker-supplied code runs with user-level privileges, and must
therefore leverage kernel-supplied services to perform malicious
actions, such as corrupting the file system or accessing the network
to divulge confidential data. The defender’s ability to thwart these
attacks stems from his ability to modify attacker-supplied code be-
fore it is executed. His goal is therefore to reliably monitor and
restrict access to security-relevant kernel services without the aid
of kernel modifications or malware source code, and without im-
pairing the functionality of non-malicious code.

Windows binaries typically access protected operating system
resources like the file system and network using a procedure de-
picted in Figure 1. First, user code calls a public accessor function
exported by a system library such as kernel32.dll. The user code
learns the entrypoint address of the accessor function by consulting
an import address table (IAT) constructed by the system loader at
process start. Both the IAT and the system library reside in the ad-
dress space of the untrusted process. The system library runs at the
same privilege level as the untrusted process into which it is loaded,
so it cannot service the request directly. Instead, it implements a
system-specific protocol that culminates in a trap to the operating
system kernel. The kernel grants (or rejects) the request using its
elevated privileges, and then transfers control back to the caller.

One popular technique for monitoring system calls of user pro-
cesses is IAT hooking (c.f., [12, 18]), wherein IAT entries are re-
placed with the addresses of guard functions that mediate access
to the system-supplied accessor functions. Unfortunately, malware
can easily circumvent this form of monitoring. For example, mal-
ware can call the system’s accessor functions directly without using
the IAT, either by guessing their entrypoints or obtaining them from
a variety of public sources (e.g., by implementing the same algo-
rithm used by the system loader to build the IAT). Alternatively,
malware can simply implement the kernel trap directly, avoiding
the accessor functions entirely.

Statically identifying these unsafe operations is provably un-
decidable in general. The core difficulty is the ubiquity of com-
puted jump instructions, which permeate almost all native code
binaries. Deciding whether a computed jump instruction will un-
safely bypass the IAT at runtime requires statically inferring the
program register and memory state at arbitrary code points, which
is well known to be equivalent to the halting problem. Moreover,
since x86 instructions are unaligned, computed jumps make it im-
possible to reliably identify all instructions in an untrusted binary
program; disassemblers must heuristically guess the addresses of
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Figure 2. System architecture

many instruction sequences in order to generate a complete dis-
assembly. Malware binaries are often specifically crafted to de-
feat these heuristics, thereby concealing malicious instruction se-
quences from analysis tools.

Our Rewriting and In-lining System (REINS) applies a binary-
rewriting algorithm that automatically transforms untrusted x86
programs so as to force all access of kernel services to use the
process’s IAT. An IAT hooking utility can then be used to reliably
guard all accesses of security-relevant kernel services. The behav-
ior of code that unsafely bypasses the IAT or that contains hidden
instruction sequences is not necessarily preserved by the transfor-
mation process, but the behavior of code that adheres to a certain
minimal set of standard x86 conventions obeyed by mainstream
compilers (detailed in Section 5) is preserved. The transformation
process produces a new binary in which all instruction sequences
are provably memory-aligned. This allows a separate verifier to
easily disassemble rewritten binaries and independently prove that
they contain no reachable trap instructions or jumps that bypass the
IAT hooks.

The rewriting algorithm uses software fault isolation (SFI) [24]
to constrain control flows of untrusted code. Data Execution Pre-
vention (DEP) hardware [13, 25] is leveraged to enforce memory
safety. Self-modifying code and executable data, which are both
rejected by DEP-enabled operating systems, are not supported.

The resulting system architecture is illustrated in Figure 2. Un-
trusted binaries are first analyzed and transformed into safe bina-
ries by a binary rewriter. Our binary rewriter is implemented as
an IDAPython [4] program that leverages the considerable anal-
ysis power of the Hex-rays IDA Pro commercial disassembler to
automatically identify function entrypoints and distinguish code
from data in complex x86 binaries. While IDA Pro is powerful,
it is not perfect; malicious code can defeat the analysis to con-
ceal instruction sequences as data or disguise function entrypoints.
A separate verifier therefore certifies that rewritten binaries are
policy-adherent. Malicious binaries that defeat the rewriter’s anal-
ysis might result in rewritten binaries that fail verification or that
fail to execute properly, but never in policy violations.
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3. Binary Rewriting Algorithm
3.1 Control-flow Safety
Our binary rewriting algorithm is based on a particularly ele-
gant SFI approach implemented in the PittSFIeld system [16],
which partitions x86 instruction sequences into c-byte chunks.
Chunk-spanning instructions and targets of jumps are moved to
chunk boundaries by padding the instruction stream with nop (no-
operation) instructions. This serves three purposes:

• When c is a power of 2, computed jumps can be easily confined
to chunk boundaries by guarding them with an instruction that
dynamically clears the low-order bits of the jump target.

• Confining all jumps to chunk boundaries makes chunks atomic.
Thus, co-locating guard instructions and the instructions they
guard within the same chunk prevents circumvention of the
guard by a computed jump. A chunk size of c = 16 suffices
to contain each guarded instruction sequence in our system.

• Aligning chunks to c-byte boundaries allows a simple, linear
disassembler to reliably discover all reachable instructions in
rewritten programs and verify that all computed jumps are suit-
ably guarded.

While it is not possible in general to statically identify all jump
targets in arbitrary binary code, modern commercial disassemblers
employ a variety of powerful heuristics that suffice to identify jump
targets (though not necessarily the specific jumps that target them)
in most non-malicious code. A failure to identify one or more jump
targets may lead to rewritten code that does not execute properly,
but the verifier ensures that it cannot lead to a policy violation.

To allow trusted, unrewritten system libraries to safely coexist
in the same address space as chunk-aligned, rewritten binaries, we
logically divide the virtual address space of each untrusted process
into low memory and high memory. Low memory addresses range
from 0 to d − 1 and may contain rewritten code sections and non-
executable data sections. High memory addresses range from d and
up, and may contain code sections of trusted libraries and arbitrary
data sections.

Partition point d is chosen to be a power of 2 so that a single
guard instruction suffices to elegantly confine untrusted computed
jumps to chunk boundaries in low memory. For example, a jump
that targets the address currently stored in the eax register can be
guarded as follows:

and eax, (d− c)
jmp eax

This clears both the low-order and high-order bits of the target
address before jumping, preventing untrusted code from jumping
directly to a system accessor function or to a non-chunk boundary
in its own code. The logical partitioning of virtual addresses into
low and high memory is feasible in practice because rewritten
code sections are generated by the rewriter and can therefore be
positioned in low memory, while trusted libraries are relocatable
through rebasing and can therefore be moved to high memory when
necessary.

The above scheme suffices to constrain the control-flow of un-
trusted executables, but it will cause most programs with computed
jumps to malfunction. Computed jump destinations are obtained
from a variety of obscure sources in real x86 programs, including
static data stored within the code section, dynamic method dispatch
tables created at runtime, and even external data files. Identifying
and rewriting all such pointers is not usually feasible even for the
most powerful disassembly tools. The guard instructions described
above will therefore typically result in redirection of some of these
pointers to arbitrary chunk boundaries, causing erratic behavior and
usually a crash (but not a policy violation). To our knowledge, all

existing SFI systems based on binary-rewriting require external in-
formation to accommodate such computed jumps—usually infor-
mation obtained from application source code.

To overcome this limitation, our system takes the novel ap-
proach of converting the original untrusted code section into a
lookup table that maps old code addresses to corresponding new
code addresses. That is, the entrypoint of each original function in
the old code section is overwritten with a pointer to the entrypoint
of the corresponding rewritten function in the new code section. To
allow rewritten code to efficiently distinguish these pointers from
real code, each is tagged with a leading byte that cannot appear
as the first byte of valid code. We use a tag byte of 0xF4, which
encodes an x86 hlt instruction that is illegal in protected mode.

This yields the concise guard instruction sequence given in the
first row of Table 1. Here, a conditional move instruction (cmovz)
dynamically detects and repoints old code pointers to new, rewrit-
ten code at runtime. While the entire instruction sequence fits in one
16-byte chunk, only the final two instructions must share a chunk
to enforce the control-flow safety policy.

Retaining the old code section as a data section has the ad-
ditional advantage of retaining any static data that may be inter-
spersed amongst the code. This data can therefore be read by the
rewritten executable at its original addresses, avoiding many dif-
ficult data preservation problems that hamper other SFI systems.
The tradeoff is an increased size of rewritten programs, which tend
to be around twice the size of the original. However, this does not
necessarily lead to an equivalent increase in runtime process sizes.
Our experiences with real x86 executables indicates that dynamic
data sizes tend to eclipse static code sizes in memory-intensive pro-
cesses. Thus, in most cases rewritten process sizes incur only a frac-
tion of the size increase experienced by the disk images whence
they were loaded.

When the original jump instruction employs a memory operand,
the rewritten code requires one scratch register, as shown in row 2
of Table 1. Scratch registers are in very short supply on x86 archi-
tectures; however, the eax register is caller-save by convention and
is not used to pass arguments by any calling convention supported
by any mainstream x86 compiler [8]. This makes it well-suited as a
scratch register at these callsites. Code whose behavior depends on
the value of eax at callsites might malfunction after applying the
code transformation in row 2, but will not result in a policy viola-
tion. No other transformations in Table 1 require scratch registers.

A particularly common form of computed jump deserves spe-
cial note. Return instructions (ret) jump to the address currently
stored on the top of the stack (and optionally pop n additional bytes
from the stack afterwards). These are guarded by the instruction
given in row 3 of Table 1, which masks the return address atop the
stack to a low memory chunk boundary. Call instructions are moved
to the ends of chunks so that the return addresses they push onto the
stack are always aligned to the start of the following chunk. Thus,
the return guards have no effect upon return addresses pushed by
properly rewritten call instructions, but protect against buffer over-
run attacks that might overwrite the return address with an unsafe
destination.

To allow untrusted code to safely access trusted library func-
tions in high memory, the rewriter permits one form of computed
jump to remain unguarded. Computed jumps whose operands di-
rectly reference the IAT are retained as-is. Such jumps usually have
the following form:

call [.idata:n]

where .idata is the section of the executable reserved for the IAT
and n is an offset that defines which IAT entry is being used. These
jumps are safe since an IAT hooking utility can ensure that they
always target policy-compliant addresses at runtime.
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Description Original code Rewritten code
Computed jumps call/jmp r cmp byte ptr [r], 0xF4
(registers) cmovz r, [r+1]

and r, (d− c)
call/jmp r

Computed jumps call/jmp [m] mov eax, [m]
(memory) cmp byte ptr [eax], 0xF4

cmovz eax, [eax+1]
and eax, (d− c)
call/jmp eax

Returns ret (n) and [esp], (d− c)
ret (n)

IAT loads mov rm, [.idata:n] mov rm, offset trampoline n

trampoline n:
and [esp], (d− c)
jmp [.idata:n]

Tail-calls to jmp [.idata:n] and [esp], (d− c)
high memory jmp [.idata:n]
Callback registrations call/jmp [.idata:n] call/jmp trampoline n

trampoline n:
push 〈callback registration function address〉
call intermediary.reg callback

return trampoline:
call intermediary.callback ret

Dynamic linking call [.idata:GetProcAddress] push offset trampoline pool
call [.idata:GetProcAddress]

trampoline pool:
.ALIGN c
call intermediary.dll out
.ALIGN c
call intermediary.dll out

...

Table 1. Summary of x86 code transformations

Unfortunately, not all uses of the IAT have this simple form.
Most x86-targeting compilers also generate code that loads ad-
dresses from the IAT into registers and later performs computed
jumps through those registers rather than reading the IAT directly.
This alternative form is employed to more efficiently encode mul-
tiple calls to the same import using a shorter instruction sequence.

To safely accommodate such calls, the rewriter identifies and
modifies all instructions that use IAT entries as data. An example
of such an instruction is given in row 4 of Table 1. For each such
instruction, the rewriter replaces the IAT memory operand with the
address of a unique trampoline chunk introduced to the rewritten
code section. The trampoline chunk performs a safe jump to the
trusted function using a direct IAT reference. Thus, any use of the
replacement argument value as a jump target results in a jump to
the trampoline chunk, which has the same effect as invoking the
desired function directly.

3.2 Memory Safety
To prevent untrusted binaries from dynamically modifying code
sections or executing data sections as code, untrusted processes
are executed with DEP enabled. DEP-supporting operating systems
and hardware allow memory pages to be marked non-executable
(NX). Attempts to execute code in NX pages result in runtime
access violations. The binary rewriter sets the NX bit on the pages
of all low memory sections other than rewritten code sections to
prevent them from being executed as code.

User processes on Windows systems can change the NX bit on
memory pages within their own address spaces, but this can only
be accomplished via a small collection of system API functions—
most notably VirtualProtect and VirtualAlloc. IAT hooking
is applied to replace the IAT entries of these functions with trusted
wrapper functions. The wrapper functions silently set the NX bit
on all pages in low memory other than rewritten code pages. The
wrappers do not require any elevated privileges; they simply access
the real VirtualProtect and VirtualAlloc system functions
with modified arguments. These system functions are accessible
to trusted libraries but not untrusted libraries because the trusted
libraries have separate IAT’s that do not undergo IAT hooking.

Trusted libraries can therefore use the VirtualProtect and
VirtualAlloc API functions to protect their local heap and stack
pages from untrusted code that executes in the same address space.
They do so by enabling read and/or write access to relevant pages
on entry to the trusted code and revoking said access on exit. IAT
hooks prevent rewritten code from directly accessing these same
functions to reverse these effects. This prevents the rewritten code
from gaining unauthorized access to trusted memory.

Our memory safety enforcement strategy conservatively rejects
untrusted, self-modifying code. Such code is increasingly rare out-
side of malware, both because it is incompatible with DEP-enabled
systems and because it typically incurs a high performance penalty.
However, it still appears regularly in certain specialized applica-
tion domains such as JIT-compilers and certain self-extracting in-
stallers. Future work concerns dynamically invoking the rewriter
and/or verifier to support such runtime code generation.
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3.3 Verification
The verifier certifies that rewritten programs cannot circumvent the
IAT and are therefore policy-adherent, but it does not prove that the
rewriting process is behavior-preserving. This reduced obligation
greatly simplifies the verifier relative to the rewriter, resulting in a
much smaller trusted computing base.

To verify control-flow safety, the rewriter disassembles each
executable section in the untrusted binary and verifies the following
properties:

• All executable sections reside in low memory.
• All exported symbols (including the program entrypoint) target

low memory chunk boundaries. (This is necessary to prevent an
untrusted module from importing an unsafe address into its IAT
from another untrusted module at load time.)

• No instruction spans a chunk boundary.
• All static branches target low memory chunk boundaries.
• All computed call, jmp, and ret instructions that do not use

the IAT as a memory operand are immediately preceeded by
a suitable masking instruction that sanitizes the target address.
The masking instruction resides in the same chunk as the jump
it guards.

• Computed jump instructions that read the IAT access a properly
aligned IAT entry, and are preceded by a suitable mask of the
return address. (Call instructions must end on a chunk boundary
rather than requiring a mask instruction, since they push their
own return addresses.)

• Kernel trapping instructions, such as int and syscall instruc-
tions, do not appear in the disassembly.

These properties ensure that hidden, unaligned instruction se-
quences that might be concealed within untrusted code sections are
not reachable at runtime. This allows the verifier to limit its atten-
tion to a linear disassembly of executable sections, avoiding any
reliance upon the incomplete code-discovery heuristics needed by
more sophisticated disassemblers to produce full disassemblies for
arbitrary binaries.

3.4 Callbacks
Callbacks are a ubiquitous component of almost all real-world
x86 binaries. These occur when an untrusted binary passes a code
pointer to a trusted library, and this code pointer is later used by
the trusted library as a jump destination. Since trusted libraries
cannot always be rewritten to guard these computed jumps (e.g.,
because the library is not write-accessible or may contain kernel
trap instructions unsupported by the rewriter), this creates an obvi-
ous loophole through which untrusted code could violate control-
flow safety. Effectively enforcing control-flow safety in practical
settings therefore requires a mechanism for guarding callbacks.

The most common form of callback is a simple return address,
which is used by every trusted callee to return to its caller. To
prevent untrusted callers from providing unsafe return addresses to
trusted callees, the verifier requires a chunk-aligned, low memory
address atop the stack during any control transfer from low to high
memory. This is achieved by the and instructions in rows 3 and 5
of Table 1, which mask the return address before jumps to trusted
callees.

Other callback pointers are passed to trusted callees as explicit
function arguments. These turn out to be more common than one
might expect in real x86 binaries. For instance, even toy C pro-
grams compiled for Windows internally register a callback function
that is invoked by the system at process termination to set the pro-
cess’s return code. Adequately supporting such callbacks educes
two challenges: (1) The protection system must ensure that the
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Figure 3. Control-flow for untrusted callbacks and returns

callback addresses passed to trusted callback registration functions
are legal jump targets. (2) There must exist a mechanism by which
callbacks can safely return to trusted callers—a jump from low to
high memory that would normally be disallowed by the protection
mechanism.

In our framework, these challenges are surmounted using a
trusted intermediary library that facilitates these control-flows. The
rewriter redirects calls of trusted callback registration functions to
the trampolines shown in row 6 of Table 1, which invoke the in-
termediary library. The intermediary library modifies relevant code
pointer arguments on the stack1 to point to unique callback stubs
within its own address space, and saves the original (untrusted) call-
back addresses in a local data structure before passing control to the
real registration function. This has the effect of registering the stubs
as the callbacks instead of the original callbacks.

When the system attempts to invoke the callback, the modi-
fied control-flow depicted in Figure 3 results. The trusted library
calls the stub that was registered by the intermediary library, which
passes control through to the original callback it replaced. How-
ever, before doing so the stub replaces the trusted caller’s return ad-
dress on the stack with the address of a return trampoline within the
rewritten code section. This prevents the untrusted callee from at-
tempting to return directly to a high memory address (which would
be prevented by the masking instruction that guards untrusted re-
turns). When the callback completes, it returns to the return trampo-
line, which transfers control to the intermediary’s callback ret
function. This function is the dual of the callback stub; it retrieves
the stored return address of the trusted caller and safely returns con-
trol there.

In all of the above, the intermediary library must avoid trusting
any input provided by the rewritten code. All code pointers are
therefore masked to low memory chunk boundaries before use,
and any trusted code pointers provided by the trusted caller must
be stored in protected memory pages to prevent corruption by
rewritten code.

3.5 Dynamic Linking
Dynamically linked programs load libraries and compute their
function entrypoints at runtime. These dynamically linked func-
tions are not traditionally accessed through the IAT. Instead,
system-supplied API functions are employed to load new libraries
into the local address space and discover the addresses of their ex-
ported functions at runtime. On Windows the API functions are
named LoadLibrary and GetProcAddress, respectively.

Safely preserving the behavior of dynamically linked programs
poses three interesting challenges for our SFI system: (1) The
system must arrange for the return value of GetProcAddress to

1 Such arguments are located at known stack offsets or within known fields
of structures passed to the registration function by reference.
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be a chunk boundary in low memory (since otherwise control-
flow guards will prevent its use as a jump target). (2) The code at
this returned address must pass control through to the dynamically
linked function without knowing the function’s identity at code-
generation time. (3) The system must prevent rewritten code from
using dynamic linking to gain direct access to prohibited library
functions, such as VirtualProtect, that should be redirected to
safe wrapper functions.

To accomplish this, the IAT hooking mechanism overwrites the
IAT entry for GetProcAddress with the entrypoint of a trusted
replacement. The replacement GetProcAddress reserves a unique
member of a trampoline pool located in the rewritten code section
and returns its address instead of the address of the requested
function. Calls to dynamically linked functions therefore get routed
through the trampoline pool instead of directly to the dynamically
linked function.

The trampoline pool is shown in the final row of Table 1, and
consists of a series of chunk-aligned calls to another trusted inter-
mediary function named dll out. These calls do not return; the
implementation of dll out pops the return address as an argument
to determine which trampoline was called. It then passes control
through to the dynamically linked function for which it reserved
that trampoline, rerouting any calls of prohibited functions to safe
wrapper functions when necessary.

As with callbacks, the intermediary library must be carefully
designed to distrust any input supplied by the rewritten code. The
implementation therefore ensures that any call to dll out results
in control flowing to the entrypoint of a non-prohibited, exported
library function. In addition, the rewriter-supplied trampoline pool
must be large enough for the intermediary library to allocate one
unique trampoline for each unique function that undergoes dynamic
linking at runtime. While the number of dynamically linked func-
tions cannot be reliably determined statically, in practice it is al-
most always equal to the number of distinct GetProcAddress call
instructions in the original program. A deficient guess causes the
replacement GetProcAddress to return a null pointer once the
trampoline pool has been exhausted, which usually results in an
error message and premature termination of the process.

4. Experiments
To evaluate the binary rewriting algorithm presented in Section 3
we developed an implementation of the system for the 32-bit ver-
sion of Microsoft Windows XP/Vista. The implementation consists
of four components: a rewriter, a verifier, an IAT hooking utility,
and an intermediary library (see Sections 3.4 and 3.5). None of the
components require elevated privileges to perform their functions.
While the implementation is Windows-specific, we believe that the
general approach could be implemented for any modern operating
system that supports DEP technology.

The rewriter transforms Windows Portable Executable (PE) files
in accordance with the algorithm presented in Section 3. Its im-
plementation consists of about 2000 lines of IDAPython code that
executes atop the Hex-rays IDA Pro 5.2 commercial disassembler.
One of IDA Pro’s primary uses is as a malware reverse engineering
and de-obfuscating tool, so it boasts many powerful code analyses
that heuristically recover program structural information without
assistance from a code-producer. These analyses are leveraged by
our system to automatically distinguish code from data and identify
function entrypoints to facilitate the rewriting algorithm.

In contrast to the significant complexity of the rewriting in-
frastructure, the verifier’s implementation consists of 1500 lines of
OCaml code that uses no external libraries or utilities (other than
the built-in OCaml standard libraries). Of these 1500 lines, approx-
imately 1000 are devoted to x86 instruction decoding, 300 to PE bi-
nary parsing, and 200 to the actual verification algorithm described

in Section 3.3. The decoder handles the entire x86 instruction set,
including floating point, MMX and all SSE extensions documented
in the Intel and AMD manuals. We found this to be necessary for
practical testing since production-level binaries frequently contain
at least some exotic instructions. (A good example is the frequent
use of quad-word MMX instructions to more efficiently zero-fill
data structures.) No code is shared between the verifier and rewriter.

The intermediary library consists of approximately 450 lines of
C and hand-written, in-lined assembly code that facilitates call-
backs and dynamic linking. An additional 150-line configuration
file itemizes all trusted callback registration functions exported by
Windows libraries used by the test programs, along with the stack
locations of any code pointer arguments they take as input. We sup-
ported all callback registration functions exported by comdlg32,
gdi32, kernel32, msvcrt, and user32. Information about ex-
ports from these libraries was obtained by examining the C header
files for each library and identifying function pointer types that ap-
pear in exported function prototypes and structs.

The IAT hooking utility is charged with replacing the IAT en-
tries of all prohibited system functions imported by rewritten PE
files (e.g., VirtualProtect) with the addresses of trusted replace-
ment functions. In addition, it must add the intermediary library to
the PE’s list of imported modules. This can be problematic if it be-
comes necessary to expand the size of the PE header, since doing
so would shift the positions of the binary sections that follow it,
resulting in misplaced data and incorrect code.

We discovered an elegant solution to this problem in the form
of a mere 4-byte change to PE headers that accomplishes all
of the above. Our IAT hooking utility simply changes the li-
brary name kernel32.dll in the headers of rewritten binaries
to helper32.dll (the name of our intermediary library). This
causes the system loader to draw all IAT entries previously im-
ported from kernel32.dll from the export table of the interme-
diary library instead. The intermediary library is compiled so as to
export all symbols found in kernel32.dll as forwards2 to the real
kernel32.dll. Prohibited functions, such as VirtualProtect,
are not forwarded; they are exported as local replacement func-
tions of the same name. Our intermediary library thus doubles as
the policy-enforcement library. (To separate them, one could sim-
ply code the intermediary library so as to statically load a separate
policy-enforcement library.)

We tested our system on the set of binary programs listed in Ta-
ble 2. All experiments were performed on a 1.8G dual-processor
AMD Opteron 248 with 2G of ram running Windows XP Profes-
sional. The second column lists file sizes, which doubled on aver-
age. The third column indicates the effect of rewriting on the size
of the code segment; the transformations detailed in Section 3 in-
creased code segments by a bit less than half on average. Columns
four and five list the time necessary for rewriting and verification.
We made no particular attempt to optimize the rewriter implemen-
tation so rewriting times are somewhat high, but verification times
are more realistic. Verification speed was about 0.9s per megabyte
of code on average. The final two columns report median runtimes
(for non-interactive programs) and process sizes for some medium-
to-large sample inputs. Runtimes typically increased by less than
5%, and process size typically increased by less than about 40%.

Several of the test programs are CPU benchmarking utilities
(e.g., whetstone). The runtimes of most of these actually im-
proved marginally after rewriting. After some analysis, we con-
cluded that this is because the rewriting algorithm word-aligns all
jump targets and prevents any instruction’s encoding from crossing
a word boundary. This improves the effectiveness of look-ahead

2 Forwards are not wrapper functions. A forward link in a PE export table
causes the loader to link directly to the module and address to which the
forward points, incurring no runtime overhead.
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Rewriting Verification
Program File Sizes (K) Code Sizes (K) Time Time Runtimes (s) Process Sizes (K)
notepad 68 / 108 (+59%) 30 / 41 (+37%) 6.7s 45ms N/A (interactive) 3736 / 3700 (-1%)
iexplore* 91 / 98 (+8%) 7 / 7 (+0%) 1.7s 14ms N/A (interactive) 22584 / 22400 (-1%)
jar 69 / 138 (+100%) 52 / 70 (+35%) 15.4s 63ms 4.15 / 4.38 (+5%) 1840 / 2590 (+41%)
gcc 88 / 174 (+98%) 62 / 88 (+42%) 30.2s 86ms 5.51 / 5.48 (+0%) 1732 / 2336 (+35%)
g++ 90 / 179 (+99%) 64 / 91 (+42%) 31.7s 157ms 22.00 / 22.50 (+2%) 2281 / 2236 (-2%)
objcopy 700 / 1390 (+98%) 503 / 741 (+47%) 25min 664ms 0.55 / 0.58 (+5%) 1576 / 2444 (+55%)
size 496 / 994 (+100%) 347 / 510 (+47%) 10min 452ms 0.11 / 0.12 (+8%) 1712 / 2560 (+50%)
strings 495 / 994 (+101%) 347 / 510 (+47%) 10min 482ms 10.58 / 11.02 (+4%) 2140 / 3000 (+40%)
windres 602 / 1170 (+94%) 420 / 615 (+46%) 16min 542ms 0.25 / 0.27 (+8%) 2408 / 3288 (+36%)
dllwrap 62 / 101 (+63%) 28 / 40 (+43%) 7.5s 43ms 0.33 / 0.33 (+0%) 1644 / 2208 (+34%)
c++filt 544 / 1070 (+97%) 384 / 568 (+48%) 14min 503ms 0.06 / 0.07 (+11%) 1336 / 2104 (+57%)
ar 513 / 1000 (+95%) 335 / 523 (+56%) 11min 461ms 0.01 / 0.01 (+0%) 1412 / 2404 (+70%)
dlltool 596 / 1160 (+95%) 416 / 612 (+47%) 16min 542ms N/A (negligible) 840 / 1240 (+48%)
whetstone 27 / 38 (+41%) 8 / 11 (+44%) 0.9s 15ms 816.50 / 806.90 (-1%) 1364 / 2096 (+54%)
linpack 32 / 50 (+58%) 14 / 19 (+36%) 30min 20ms 249.80 / 248.30 (-1%) 1676 / 2416 (+44%)
pi ccs5 130 / 293 (+125%) 129 / 167 (+29%) 74.0s 142ms 58.94 / 60.05 (+3%) 38428 / 39180 (+2%)

median (+96%) (+42%) 74.0s 150ms (+2%) (+40%)

*Only the exe part of this application was rewritten, not its helper libraries.

Table 2. Experimental results

and instruction decoding piplining optimizations implemented by
modern processors.

The experimental results reported in Table 2 enforced only the
core access control policies required to prevent control-flow and
memory safety violations. For example, unsafe callback registra-
tions and callbacks were intercepted and rerouted via the interme-
diary library to prevent control-flow violations. However, we also
used the system to enforce simple audit policies that logged API
calls and their arguments to a disk file (which was useful for debug-
ging), and access control policies that denied access to various API
functions based on caller-supplied arguments. These marginally in-
creased runtimes (mostly due to disk accesses for the log file oper-
ations) but did not noticeably affect any of the other statistics.

The set of programs we were able to effectively rewrite was
mainly constrained by the need to find programs that do not use
the Windows COM automation library, which our system does not
yet support. COM is unfortunately used to some degree by almost
every production-level Windows binary, so this was a significant
restriction. We were able to rewrite COM-aware programs, but
using their COM features resulted in a crash. For example, we could
rewrite the exe portion of Microsoft Internet Exporer 6 but not its
helper libraries, since the helper libraries use COM. COM support
is discussed in greater detail in Section 5.

5. Discussion
The binary rewriting algorithm presented in Section 3 only pre-
serves the behavior of executables that adhere to certain x86 code
generation conventions. Code that violates these conventions might
yield rewritten code that fails verification or fails to execute prop-
erly, but will never lead to verified code that violates control-flow
safety. Nevertheless, the practicality of the approach depends on its
ability to preserve the behavior of a large class of non-malicious
code. Compatibility limitations of this sort have been a major ob-
stacle to widespread adoption of much past SFI research.

In this section we discuss the binary code conventions that are
prerequisites for behavior-preservation under our algorithm and
argue that these conventions are satisfied by code generated by most
mainstream x86 compilers for major source languages. Known
limitations of our algorithm are highlighted during the course of
the discussion.

5.1 Code Pointers
The binary rewriting algorithm in Section 3 expects each code
pointer used as a jump target by untrusted code to originate from
one of five possible sources:
• a low-memory address drawn from the instruction pointer (e.g.,

a return address pushed by a call instruction),
• static data that points to a function entrypoint in the original

binary,
• a function entrypoint stored in the IAT,
• a return address pushed by a trusted caller during a callback, or
• a return value yielded by the system’s dynamic linking API

(e.g., GetProcAddress).

The semantics of computed jumps whose arguments do not origi-
nate from one of these sources are not necessarily preserved by the
rewriting algorithm. For example, a program that computes a jump
destination using pointer arithmetic will usually end up jumping to
an arbitrary chunk boundary, resulting in erratic behavior.

Low-level source languages (e.g., C/C++) that expose code
pointers to the programmer do not typically make any guarantees
about the relative values of such pointers. For example, Microsoft
Visual C compilers return function pointers that reference jump
tables instead of the actual function bodies, and the ordering of
the jump table contents varies across builds. Thus, aside from re-
flective code that is designed to fail when modified (usually for
anti-piracy purposes), dependence upon raw pointer values is rare
even in large-scale, production-level binaries. We have encountered
only one significant exception to this in our analysis of Windows
binaries, detailed below.

Microsoft Component Object Model (COM) [17] is a binary-
level standard by which Windows programs interoperate by ex-
changing interfaces expressed as arrays of function pointers. Since
these function pointers do not originate from one of the sources
listed above, programs that use COM are not semantically pre-
served by our current implementation; rewritten programs that at-
tempt to use COM services usually crash.

Supporting COM requires the development of a COM wrapper
library that automatically converts interfaces to arrays of chunk-
aligned trampoline pointers, similar to our mechanism for support-
ing dynamic linking (see Section 3.5). The IAT hooking mechanism
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can then redirect COM calls to the wrapper library to support the
safe exchange of COM interfaces. The development effort required
to produce a fully functional COM wrapper library is potentially
significant due to the plethora of COM services that must be sup-
ported, but not theoretically challenging. It is reserved for future
work.

Almost all large-scale commercial Windows programs make
moderate to extensive use of COM services at runtime. Thus, lack
of COM support is presently the most significant compatibility lim-
itation of our implementation. The experiments in Section 4 there-
fore limit their attention to programs that do not use COM, or
whose use of COM is restricted to particular application function-
alities that can be avoided during testing.

5.2 Distinguishing Code from Data
Binaries generated by most mainstream compilers mix code and
static data within the .text section of the executable. The static
data usually consists of pointer tables or string literals. The rewriter
presented in Section 3 relies upon a classification algorithm that
heuristically distinguishes the code from the data. If code is mis-
classified as data, that code is incorrectly omitted from the rewritten
binary’s code section and erratic behavior results. If data is misclas-
sified as code that contains function entrypoints, the rewriter might
overwrite some of the data with function pointers as it constructs
the lookup table described in Section 3.1. This can result in corrup-
tion of the static data.

As part of the classification process, the algorithm must also
identify all possible targets of computed jumps. The vast majority
of these targets are function entrypoints, which are readily identi-
fiable in most binaries by the characteristic function prologues and
epilogues that begin and conclude most function bodies. The few
remaining computed jump targets are gleaned through a combina-
tion of code reachability analysis and pattern-matching heuristics
that identify instruction sequences compiled from common source
language structures (e.g., switch-case statements) that often com-
pile to computed jumps.

In practice we find that IDA Pro’s automatic binary analysis
works quite well for most of the above, requiring only occasional
manual adjustments. The most common manual adjustment is to
identify a code block that the analysis misclassified as data. All
manual adjustments performed during our experiments were fairly
simple and could have been automated with IDA Pro plug-ins.

A more subtle prerequisite of the rewriting algorithm requires
that all computed jump destinations in the original binary be at
least w + 1 bytes away from the next computed jump destination
or any following data, where w is the word size of the system. This
is necessary to ensure that there is sufficient space for the rewriter
to write a tagged code pointer at that address without overwriting
any adjacent code pointers or data. In practice this is a reasonable
requirement, since most computed jump destinations are already
16-byte aligned for performance reasons, and since all binaries
compatible with hotpatching technology (c.f., [21]) have at least
w + 1 bytes of padding between consecutive function entrypoints.
As a result of these conventions, we have not encountered any
violations of this prerequisite during testing.

5.3 Register Usage Conventions
The 32-bit x86 architecture has a very limited register store which
is aggressively allocated by most compilers during code generation.
As a result, it is not possible to reliably reserve any dedicated
registers for SFI use throughout the lifetime of arbitrary x86 code.
Most binary rewriting algorithms proposed by past SFI research
require at least one dedicated register, which introduces significant
compatibility problems when scaling to large-scale, real-world x86
binaries.

The rewriting algorithm presented in Section 3 requires no ded-
icated registers and only one temporary scratch register for use
at call sites with memory operands, and at return sites that cross
from high to low memory. At call sites the eax register is the
only general-purpose register that is both caller-save and not used
for argument-passing by any standard x86 calling convention [8].
Since it is caller-save by convention, code whose behavior depends
on preserving it across calls typically saves and restores it before
and after each call. This makes it well-suited as a scratch regis-
ter. At return sites, eax is not a good choice because it is used by
most calling conventions to store return values. Instead, our imple-
mentation uses edx, which is the only other available caller-save
register.3

The x86 execution environment also includes a collection of sta-
tus flags that are written by comparison instructions and read by
conditional branches. The rewriting algorithm assumes that pro-
gram behavior does not depend on preserving these flags across
computed jumps. Status flags are extremely volatile, so to our
knowledge no compiler generates code whose behavior depends on
preserving them across computed jumps; however, in theory this
limitation could be lifted by saving and restoring the flags before
and after in-lined guard instructions.

5.4 Multi-threading
To safely support multi-threaded programs, rewritten programs re-
quire access to a threading implementation that provides certain
minimal memory-isolation between threads that share a virtual ad-
dress space. Without such isolation, chunks are not atomic—a con-
text switch within a chunk allows the new thread to modify the
register and stack contents of the suspended thread, potentially ef-
fecting a control-flow violation when that thread resumes.

The default Windows threading implementation does not pro-
vide the isolation necessary to protect multi-threaded programs
from such attacks. It stores almost all thread state, including saved
stack and register contents, within the local address space of the
process, where it can potentially be located and corrupted by a ma-
licious thread. This leaves our current implementation vulnerable
to concurrency attacks.

Closing this vulnerability requires development of a safe,
trusted threading library that sets and clears appropriate memory
access permissions for locally stored thread state during context
switches. IAT hooks could then be used to reroute standard Win-
dows threads calls to the corresponding safe replacements. The
Windows API exposes all the functionality necessary to implement
such a library via its fibers interface, so this solution would not
require elevated system privileges to implement. Building such a
library is a project that we intend to pursue in future work.

5.5 Trusted Libraries
As trusted components of the system, trusted libraries are another
source of potential vulnerabilities. Our system does not defend
against attacks that exploit existing vulnerabilities in trusted code,
such as deficient checks of user inputs that may lead to buffer
overflows within trusted modules, or unsafe storage of security-
relevant data in places where it could be corrupted by an attacker.

Instead, the system is intended to allow as many modules as
possible to be shifted to the untrusted half of Figure 2. That is,
any library that does not need to implement direct kernel traps can
potentially be rewritten and executed as untrusted code, so that
its accesses of kernel services can be monitored by the policy-
enforcement library. Any exploitation of such rewritten libraries by
an attacker cannot bypass the monitoring mechanism, and therefore

3 The ecx register is also caller-save by convention, but some object-
oriented compilers reserve it for holding the this pointer.
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cannot do significant damage to the system. Ideally, any remaining
trusted libraries consist almost entirely of small, stateless trap in-
struction sequences that simply dispatch service requests to the ker-
nel. Such simple libraries are unlikely to include many exploitable
vulnerabilities, and therefore constitute a more acceptable trusted
computing base.

6. Related Work
SFI research has traditionally concerned the problem of safely and
efficiently executing a small, untrusted program (e.g., a browser
plug-in or operating system extension) within the address space
of a larger, trusted program. The SFI system enforces control-flow
and memory safety by inserting extra instructions into untrusted
code to guard potentially dangerous jumps and memory accesses.
The seminal work on the subject by Wahbe, Lucco, Anderson,
and Graham [24] implements such module encapsulation for RISC
architectures. Their original technique relies upon several features
specific to RISC, including memory-aligned instruction encodings
and a large register store that affords the reservation of dedicated
registers.

Implementing effective SFI for CISC architectures is generally
viewed to be a substantially more difficult problem. Most CISC
SFI implementations simplify the many difficult design hurdles
by targeting only x86 assembly language programs yielded by a
specific compiler. Using assembly code instead of raw binaries, and
limiting attention to the output of a particular compiler (and often
only output yielded by particular compiler options), allows a simple
static analysis to infer a table of all legal jump targets. (The jump
targets are usually explicitly labeled in the assembly code output
produced by the compiler.) This table can then be injected into
the rewritten code as a runtime data structure that is dynamically
consulted to guard computed jumps. Examples of this approach
include the MiSFiT [20] and SASI [5] systems, both of which target
gcc assembly code output.

The success of these systems has led to a large body of prac-
tical IRM research (e.g., [1–3, 7, 11, 14, 22]) for type-safe virtual
machine languages such as Java bytecode. These systems leverage
the control-flow and memory safety properties enforced by the Java
virtual machine and bytecode verifier to inject non-circumventable
guard instructions into untrusted bytecode binaries. While this
has proved very effective for enforcing complex, application- and
system-specific security policies over well-typed binary code, it
does not address the problem of protecting systems against mal-
ware expressed as untyped native code. Since the vast majority of
current-day malware threats propagate as untyped x86 native code
binaries, this is a significant open problem.

More recently, two different works have offered more general-
ized CISC SFI solutions that rely on binary meta-data rather than
compiler-generated assembly code listings. Microsoft’s XFI sys-
tem [6] enforces control-flow safety by inserting a unique byte se-
quence (encoded as the unused operand of a multi-byte nop in-
struction) immediately before all valid jump destinations in rewrit-
ten code. This allows guard instructions to dynamically test for the
existence of this reserved sequence before permitting a computed
jump to the following address. The PittSFIeld system [16], which
inspired our work, introduces the chunk-partitioning strategy de-
scribed at the beginning of Section 3.1. Both systems include for-
mal proofs of safety; the safety proof for XFI is written out for
human consumption whereas the one for PittSFIeld is machine-
checkable and uses a verifier similar to the one described in Sec-
tion 3.3.

The XFI and PittSFIeld systems are significant steps forward
because they offer more elegant CISC SFI strategies than past work
and because they include formal verification. However, both still

require the cooperation of code-producers because they rely on in-
formation not typically found in real COTS binaries. For example,
XFI is implemented atop the Vulcan library [23], which identifies
jump destinations and code pointers by drawing upon a program
database (PDB) file produced by many compilers for debugging
purposes, but that is not usually released to the general public. No
prior work to our knowledge has successfully applied SFI technol-
ogy to x86 COTS applications using only information available to
the average code-consumer. In addition, while the PittSFIeld veri-
fier works effectively for most gcc-generated machine code, it does
not support certain problematic control flows introduced by IAT
calls, operating system callbacks, and dynamic linking, which ap-
pear regularly in COTS binaries for x86 Windows systems.

The increasing availability of hardware DEP support [13, 25]
over the past few years has introduced a significant shift in the
tradeoffs that have motivated most past SFI research. DEP provides
a hardware-supported (and therefore relatively light-weight) mem-
ory and control-flow safety enforcement mechanism that operates
at page rather than process granularity. It therefore offers an ex-
tremely elegant SFI enforcement paradigm, but only if untrusted
code can be prevented from accessing and abusing the DEP ser-
vices themselves to change memory permissions and thereby vi-
olate safety. This observation has led us to a reversal of the tra-
ditional SFI paradigm: Where past SFI work typically prevents a
small, untrusted module from damaging a larger, trusted program
that contains it, our work seeks to protect smaller, trusted mod-
ules (system libraries) from larger, untrusted processes that import
them.

7. Conclusion
We have presented the design and implementation of an IRM
Rewriting and In-lining System (REINS) that monitors and restricts
Windows API calls of untrusted native x86 binary executable pro-
grams. The framework employs an array of software fault isola-
tion techniques to constrain control-flows of untrusted code, and
leverages Data Execution Prevention technology available in mod-
ern hardware and operating systems to enforce memory safety.
These are applied to force untrusted code to follow the standard
Windows API calling protocol when accessing system resources,
allowing such accesses to be reliably monitored by a trusted policy-
enforcement library.

The software fault isolation mechanism consists of a binary
rewriting algorithm that requires no explicit cooperation from code-
producers, and that is behavior-preserving for a large class of COTS
binaries drawn from several mainstream compiler families. To our
knowledge, no past SFI work has achieved this. Since the rewrit-
ing infrastructure is of significant complexity, a smaller, separate
verifier automatically certifies that rewritten code produced by the
rewriter cannot circumvent the monitor. This allows the rewriting
task to be shifted to an untrusted third party if desired.

Experiments on COTS applications showed that although rewrit-
ing doubled file sizes on average, the median process size increased
by less than half, and runtime overhead was less than 5% for typical
programs. The most significant compatibility problem encountered
during testing involved lack of support for the Windows COM
automation library, which is used by most large-scale Windows
programs for at least a few program features. Supporting COM is
therefore an important subject of future work.

The current Windows implementation of the system remains
vulnerable to certain multi-threading attacks in which a malicious
thread corrupts the stored state of a suspended thread before the
suspended thread resumes. This vulnerability could be closed by
linking rewritten programs to a safer threads implementation that
isolates threads that share the same address space from each other’s
stored stack and register state. The existing SFI framework provides
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the foundation necessary to implement such isolation, but this is a
project we have not yet undertaken. Development of a safe Win-
dows threads library for this purpose is another important practical
avenue of future work.

The experiments reported here focus on testing the soundness,
transparency, and feasibility of the binary rewriting algorithm on
a real-world operating system. Less attention was devoted to en-
forcing complex security policies; enforced policies were limited to
simple audit and access control. Past work [10, 15] has shown that
IRM systems are capable of enforcing a much richer class of poli-
cies that includes history-based, temporal properties. Developing
policy-enforcement libraries that implement such policies is there-
fore a logical next step toward applying our framework to interest-
ing, practical security problems for these real-world systems.
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