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Abstract
Unlike library code, whose instruction addresses can be randomized
by address space layout randomization (ASLR), application binary
code often has static instruction addresses. Attackers can exploit
this limitation to craft robust shell codes for such applications, as
demonstrated by a recent attack that reuses instruction gadgets from
the static binary code of victim applications.

This paper introduces binary stirring, a new technique that imbues
x86 native code with the ability to self-randomize its instruction
addresses each time it is launched. The input to STIR is only the
application binary code without any source code, debug symbols,
or relocation information. The output is a new binary whose basic
block addresses are dynamically determined at load-time. There-
fore, even if an attacker can find code gadgets in one instance of the
binary, the instruction addresses in other instances are unpredictable.
An array of binary transformation techniques enable STIR to trans-
parently protect large, realistic applications that cannot be perfectly
disassembled due to computed jumps, code-data interleaving, OS
callbacks, dynamic linking and a variety of other difficult binary
features. Evaluation of STIR for both Windows and Linux platforms
shows that stirring introduces about 1.6% overhead on average to
application runtimes.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; D.3.4 [Soft-
ware]: Processors—Code generation; Translator writing systems
and compiler generators

Keywords
obfuscation, randomization, return-oriented programming, software
security

1. INTRODUCTION
Subverting control-flows of vulnerable programs by hijacking

function pointers (e.g., return addresses) and redirecting them to
shell code has long been a dream goal of attackers. For such an
attack to succeed, there are two conditions: (1) the targeted software
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is vulnerable to redirection, and (2) the attacker-supplied shell code
is executable. Consequently, to stop these attacks, a great deal
of research has focused on identifying and eliminating software
vulnerabilities, either through static analysis of program source code
(e.g., [37]) or through dynamic analysis or symbolic execution of
program binary code (e.g., [13, 27]).

Meanwhile, there is also a significant amount of work focusing
on how to prevent the execution of shell code based on its origin
or location. Initially, attackers directly injected malicious machine
code into vulnerable programs, prompting the development of W⊕X
(write-xor-execute) protections such as DEP [4] and ExecShield [57]
to block execution of the injected payloads. In response, attackers
began to redirect control flows directly to potentially dangerous code
already present in victim process address spaces (e.g., in standard
libraries), bypassing W⊕X. Return-into-libc attacks [55] and return
oriented programming (ROP) [12, 15, 51] are two major categories
of such attacks. As a result, address space layout randomization
(ASLR) [10, 45] was invented to frustrate attacks that bypass W⊕X.

ASLR has significantly raised the bar for standard library-based
shell code because attackers cannot predict the addresses of danger-
ous instructions to which they wish to transfer control. However,
a recent attack from Q [50] has demonstrated that attackers can
alternatively redirect control to shell code constructed from gadgets
(i.e., short instruction sequences) already present in the application
binary code. Such an attack is extremely dangerous since instruc-
tion addresses in most application binaries are fixed (i.e., static)
once compiled (except for position independent code). This allows
attackers to create robust shell code for many binaries [50].

Recent attempts to solve this issue have employed both static and
dynamic techniques. In-place-randomization (IPR) [44] statically
smashes unwanted gadgets by changing their semantics or reorder-
ing their constituent instructions without perturbing the rest of the
binary. Alternatively, ILR [29] dynamically eliminates gadgets by
randomizing all instruction addresses and using a fall-through map
to dynamically guide execution through the reordered instructions.
While these two approaches are valuable first steps, IPR suffers
from deployment issues (since millions of separately shipped, ran-
domized copies are required to obtain a sufficiently diverse field
of application instances), and ILR suffers from high performance
overhead (because of its highly dynamic, VM-based approach).

This paper introduces a new technique, Self-Transforming Instruc-
tion Relocation (STIR), that transforms legacy application binary
code into self-randomizing code that statically re-randomizes itself
each time it is loaded. The capacity to re-randomize legacy code
(i.e., code without debug symbols or relocation information) at load-
time greatly eases deployment, and its static code transformation
approach yields significantly reduced performance overheads. More-
over, randomizing at basic block granularity achieves higher entropy



than ASLR, which only randomizes section base addresses, and can
therefore be susceptible to derandomization attacks [46, 52].

STIR is a fully automatic, binary-centric solution that does not
require any source code or symbolic information for the target binary
program. STIR-enabled code randomly reorders the basic blocks
in each binary code section each time it is launched, frustrating
attempts to predict the locations of gadgets. It is therefore fully
transparent, and there is no modification to the OS or compiler. This
makes it easily deployable; software vendors or end users need only
apply STIR to their binaries to generate one self-randomizing copy,
and can thereafter distribute the binary code normally.

Randomizing legacy CISC code for real-world OS’s (Microsoft
Windows and Linux) without compiler support raises many chal-
lenges, including semantic preservation of dynamically computed
jumps, code interleaved with data, function callbacks, and imperfect
disassembly information. These challenges are detailed further in
§2. In this paper, we develop a suite of novel techniques, includ-
ing conservative disassembly, jump table recovery, and dynamic
dispatch, to address these challenges. Central to our approach is a
binary transformation strategy that expects and tolerates many forms
of disassembly errors by conservatively treating every byte in target
code sections as both a potential instruction starting point and static
data. This obviates the need for perfect disassemblies, which are
seldom realizable in practice without source code.

We have implemented STIR and evaluated it on both Windows
and Linux platforms with a large number of legacy binary programs.
Our experimental results show that STIR can successfully transform
application binaries with self-randomized instruction addresses, and
that doing so introduces about 1.6% overhead (significantly better
than ILR’s 16%) on average at runtime to the applications.

In summary, this paper makes the following contributions.

• We present a mostly static, instruction address randomization
technique to counter ROP shell-code that reuses gadgets in
legacy binaries. Randomization is achieved via a novel static
binary rewriting that first transforms the binary into a self-
randomizable representation, followed by a load-time phase
that stirs the binary at program start, yielding a different
ordering of the instruction addresses each time the program is
launched.

• To enable static rewriting of legacy code, we have developed
a number of new techniques in support of native x86 code
for computed jumps, code-data interleaving, OS callbacks,
dynamic linking, and disassembly error tolerance. We believe
these techniques constitute a significant advancement in static
binary writing.

• We have implemented our entire system on two mainstream
OS architectures (Windows and Linux) and tested it with a
large number of application binaries. The implementation
consists of a conservative, static disassembler and a load-time
reassembler. Our empirical evaluation shows that STIR is a
promising approach for defending real-world legacy binaries
against ROP shell code.

Section 2 begins with a description of challenges that a legacy
native code rewriter must overcome, and an overview of our ap-
proach. Section 3 elaborates by presenting a detailed design of
STIR, including its static disassembler and load-time reassembler.
Section 4 reports the results of our evaluation of STIR on over 100
Windows and Linux binaries. Section 5 discusses known limitations
of the system, and Section 6 provides direct comparisons to related
work. Finally, Section 7 concludes.

2. SYSTEM OVERVIEW
Users of our system submit legacy x86 COTS binaries (PE files

for Windows, or ELF files for Linux) to a rewriter. The rewriter
disassembles, transforms, and reassembles the target code into a
new, self-randomizing binary that reorders its own basic blocks each
time it is executed. Instruction address randomization is achieved
by randomizing the basic blocks. No source code, relocation infor-
mation, debug sections, symbol stores (e.g., PDB files), or hints are
required. Expert users may guide the disassembly process through
the use of an interactive disassembler (e.g., IDA Pro [28]), but our
system is designed to make such guidance unnecessary in the vast
majority of cases.

2.1 Challenges
Achieving instruction-level randomization of legacy, x86 binaries

without source-level information introduces numerous challenges:

Computed jumps: Native x86 code often dynamically computes
jump destinations from data values at runtime. Such operations
pervade almost all x86 binaries; for example, binaries compiled
from object-oriented languages typically draw code pointers from
data in method dispatch tables. These pointers can undergo arbitrary
binary arithmetic before they are used, such as logic that decodes
them from an obfuscated representation intended to thwart buffer
overrun attacks.

Preserving the semantics of computed jumps after stirring re-
quires an efficient means of dynamically identifying and re-pointing
all code pointers to the relocated instruction addresses. Prior work,
such as static binary rewriters for software fault isolation (e.g., [25,
39, 53, 58]), relies upon compile-time support to handle this. How-
ever, randomizing legacy code for which there is no source-level
relocation or debug information requires a new solution.

Code interleaved with data: Modern compilers aggressively inter-
leave static data within code sections in both PE and ELF binaries
for performance reasons. In the compiled binaries there is generally
no means of distinguishing the data bytes from the code. Inadver-
tently randomizing the data along with the code breaks the binary,
introducing difficulties for instruction-level randomizers. Viable
solutions must somehow preserve the data whilst randomizing all
the reachable code.

Disassembly undecidability: It is not possible in general to fully
disassemble arbitrary x86 binaries purely statically. All static dis-
assemblers rely on heuristics to find the reachable code amidst the
data, and even the best disassemblers frequently guess incorrectly
even for non-malicious, non-obfuscated binaries [59]. Solutions
that assume fully correct disassemblies are therefore impractical for
real-world, legacy, COTS binaries.

Callbacks: A callback occurs when the OS uses a code pointer
previously passed from the program as a computed jump destina-
tion. Such callbacks are a mainstay of event-driven applications.
Unlike typical computed jumps, callback pointers are not used as
jump targets by any instruction visible to the randomizer. The only
instructions that use them as jump targets are within the OS. This
makes these code pointers especially difficult to identify and re-point
correctly.

Position-dependent instructions: Instructions whose behavior will
break if they are relocated within the section that contains them are
said to be position-dependent. Ironically, position-dependent in-
structions are typically found within blocks of position independent
code (PIC)—code sections designed to be relocatable as a group



Original Binary

.text

Rewritten Binary

.told (NX bit set)

.tnew

Header

Import Table

.data

Block 1 → 500F86 . . .
data → (8 bytes)
Block 2 → 55FF24 . . .
...

...

Block n → 5A5B0F . . .
data → (6 bytes)

Rewritten Header

Import Table

.data

Block 1 → F4 〈addr of NB 1〉
data → (8 bytes)
Block 2 → 55FF24 . . .
...

...

Block n → F4 〈addr of NB n〉
data → (6 bytes)

NB 1 → rewrite(Block 1)
NB 2 → rewrite(Block 2)
...

...

NB n → rewrite(Block n)

Figure 1: Static binary rewriting phase

at load-time or runtime [42]. The position independence of such
code is typically achieved via instructions that dynamically compute
their own addresses and expect to find the other instructions of the
section at known offsets relative to themselves. Such instructions
break if relocated within the section, introducing difficulties for
more fine-grained, instruction-level randomization.

2.2 Approach Overview
Our system architecture addresses these challenges in two phases:

(1) a static phase, depicted by Fig. 1, that transforms the binary
into a more easily randomizable form, and (2) a load-time phase
that stirs the binary by randomly reordering its instructions each
time it starts. Code/data interleaving, imperfect disassembly, and
position independent instructions are addressed by the static phase.
Computed jumps and callbacks are further assisted by the load-time
phase.

To solve the code/data interleaving and uncomputable disassem-
bly problems, our static phase adopts a novel approach that treats
all bytes as both data and code. To do so, it doubles each code
segment into two separate segments—one in which all bytes are
treated as data, and another in which all bytes are treated as code.
This approach of keeping a copy of original binary code is partially
inspired by DynInst [31] (although DynInst keeps only one copy,
whereas STIR keeps both).

In the data-only copy (.told), all bytes are preserved at their
original addresses, but the section is set non-executable (NX), safely
deactivating any original, unrandomized code (including any gad-
gets) that it may contain. This safely preserves all the static data at
its original addresses without the need to statically identify which
bytes are data and which are code.

In the code-only copy (.tnew), all bytes are disassembled into
code blocks that can be randomly stirred into a new layout each
time the program starts. Any data bytes simply become harmless,
unreachable code in the new binary’s code section. Thus, there
is no need to statically predict which bytes are part of reachable
control-flows and which are not.

Random stirring of the code-only section is performed during
the second stage by a trusted library statically linked into the new
binary. The library randomly reorders all basic blocks in the new

Original:
.text:0040CC9B FF D0 call eax

Rewritten:
.tnew:00436EDA 80 38 F4 cmp byte ptr [eax], F4h
.tnew:00436EDD 0F 44 40 01 cmovz eax, [eax+1]
.tnew:00436EE1 FF D0 call eax

Figure 2: Semantic preservation of computed jumps

code section each time the program starts. The load order of the
system guarantees that this library initializer code always runs before
the target code it stirs.

Afterwards, some code pointers (e.g., immediate operands and
those pushed onto the stack by call instructions) have been re-
pointed to correct addresses, but others (e.g., those in method dis-
patch tables) continue to point into the data-only segment. Recall
that the data-only segment is non-executable, so attempting to use
one of these stale pointers as a computed jump target results in an
exception (usually a crash). To solve this computed jump problem,
our static phase additionally translates all computed jump instruc-
tions from the original code into a short alternative sequence in the
new code that dynamically detects and re-points old pointers to new
addresses at runtime. Computed jumps are extremely common, so
keeping the replacement sequence small and efficient is crucial for
maintaining good performance.

We discovered a 2-instruction sequence, shown in Fig. 2, that reli-
ably re-points such code pointers with low overhead. Conceptually,
our solution repurposes part of the data-only segment as a lookup
table that maps old code addresses to the new one. Instructions at
likely computed jump targets in the old code are overwritten during
the static and load-time phases with pointers to their corresponding
locations in the new code segment. Even though static disassem-
blers cannot reliably distinguish code from data or anticipate the
destinations of specific computed jump instructions, they can iden-
tify likely computed jump targets, such as function prologues, with
high accuracy. Such heuristics suffice to identify a superset of all
computed jump targets, although which computed jumps go where
remains unknown.

The instruction sequence in Fig. 2 leverages this information by
conditionally replacing each code pointer with the correct pointer
stored at the location to which it points, efficiently patching the
computed control-flows at runtime. To easily distinguish old code
pointers from new, our lookup table prefixes each pointer entry
with tag byte 0xF4, which encodes an illegal x86 instruction. Thus,
pointers whose destinations start with the tag are stale and need to
be updated, while those that do not are already correct.

Callbacks are facilitated by a similar process that involves rerout-
ing control-flows that cross the user-code/OS boundary through the
trusted library, which re-points callback pointers. The details of this
process and the preservation of position-dependent instructions are
discussed in greater detail the in the next section.

3. DETAILED DESIGN
The architecture of STIR is shown in Fig. 3. It includes three

main components: (1) a conservative disassembler, (2) a lookup
table generator, and (3) a load-time reassembler. At a high level,
our disassembler takes a target binary and transforms it to a ran-
domizable representation. An address map of the randomizable
representation is encoded into the new binary by the lookup table
generator. This is used by the load-time reassembler to efficiently
randomize the new binary’s code section each time it is launched.

This section presents a detailed design of each component. We
first outline the static phase of our algorithm (our conservative
disassembler and lookup table generator) in §3.1, followed by the
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Algorithm 1 Trans(α, c): Translate one instruction
Input: address mapping α : Z⇀ Z and instruction c
Output: translated instruction(s)

if IsComputedJump(c) then
op ← Operand(c)
if IsRegister(op) then

return [ cmp op, F4h;
cmovz op, [op+1]; c ]

else if IsMemory(op) then
Operand(c)← eax

return [ mov eax, op;
cmp [eax], F4h;
cmovz eax, [eax+1]; c ]

end if
else if IsDirectJump(c) then
t← OffsetOperand(c)
return c with operand changed to α(t)

else
return c

end if

load-time phase (our reassembler) in §3.2. Section 3.3 walks through
an example. Finally, §3.4 addresses practical compatibility issues.

3.1 Static Rewriting Phase
Target binaries are first disassembled to assembly code. We

use the IDA Pro disassembler from Hex-rays for this purpose [28],
though any disassembler capable of accurately identifying likely
computed jump targets could be substituted.

The resulting disassembly may contain harmless errors that misi-
dentify data bytes as code, or that misidentify some code addresses
as possible computed jump targets; but errors that omit code or mis-
identify data as computed jump targets can lead to non-functional
rewritten code. We therefore use settings that encourage the dis-
assembler to interpret all bytes that constitute valid instruction en-
codings as code, and that identify all instructions that implement
prologues for known calling conventions as possible computed jump
targets. These settings suffice to avoid all harmful disassembly er-
rors in our experiments (see §4).

The assembly code is next partitioned into basic blocks, where a
basic block can be any contiguous sequence of instructions with a
single entry point. Each block must also end with an unconditional
jump, but STIR can meet this requirement by inserting jmp 0
instructions (a semantic no-op) to partition the code into arbitrarily
small blocks during rewriting. The resulting blocks are copied and

Algorithm 2 Translate all instructions
Input: instruction list C
Output: rewritten block list B
B ← [ ]
α← ∅
t← base address of .told section
t′ ← base address of .tnew section
for all c ∈ C do

if IsCode(c) then
α← α ∪ {(t, t′)}
t′ ← t′ + |Trans(ι, c)|

end if
t← t+ |c|

end for
for all c ∈ C do

if IsCode(c) then
append Trans(α, c) to B

end if
end for
return B

translated into a new binary section according to Algorithms 1–2,
which we implemented as an IDAPython script.

Algorithm 1 translates a single instruction into its replacement
in the new code section. Most instructions are left unchanged, but
computed jumps are replaced with the lookup table code described
in §2.2, and direct branches are re-pointed according to address
mapping α.

Algorithm 2 calls Algorithm 1 as a subroutine to translate all
the instructions. Its initial pass first computes mapping α by using
identity function ι as the address mapping.1 The second pass uses
the resulting α to generate the final new code section with direct
branches re-targeted.

Once the new code section has been generated, the lookup table
generator overwrites all potential computed jump targets t in the
original code section with a tag byte 0xF4 followed by 4-byte pointer
α(t). This implements the lookup table described in §2.2.

It may seem more natural to implement range checks to identify
stale pointers rather than using tag bytes. However, in general a
stirred binary may consist of many separate modules, each of which
has undergone separate stirring, and which freely exchange stale
1Some x86 instructions’ lengths can change when ι is replaced
by α. Our rewriter conservatively translates these to their longest
encodings during the first pass to avoid such changes, but a more
optimal rewriter could use multiple passes to generate smaller code.



code pointers at runtime. Since each module loads into a contiguous
virtual address space, it is not possible to place all the old code
sections within a single virtual address range. Thus, implementing
pointer range checks properly would require many nested condition-
als, impairing performance. Our use of tag bytes reduces this to a
single conditional move instruction and no conditional branches.

The resulting binary is finalized by editing its binary header to
import the library that performs binary stirring at program start. PE
and ELF headers cannot be safely lengthened without potentially
moving the sections that follow, introducing a host of data relocation
problems. To avoid this, we simply substitute the import table entry
for a standard system library (kernel32.dll on Windows) with
an equal-length entry for our library. Our library exports all symbols
of the system library as forwards to the real system library, allowing
it to be transparently used as its replacement. This keeps the header
length invariant while importing all the new code necessary for
stirring.

3.2 Load-time Stirring Phase
When the rewritten program is launched, the STIR library’s ini-

tializer code runs to completion before any code in STIR-enabled
modules that link to it. On Windows this is achieved by the system
load order, which guarantees that statically linked libraries initialize
before modules that link to them. On Linux, the library is imple-
mented as a shared object (SO) that is injected into the address space
of STIR-enabled processes using the LD_PRELOAD environment
variable. When this variable is set to the path of a shared object, the
system loader ensures that the shared object is loaded first, before
any of the other libraries that a binary may need.

The library initializer performs two main tasks at program start:
• All basic blocks in the linking module’s .tnew section are

randomly reordered. During this stirring, direct branch operands
are repointed according to address mapping α, computed during
the static phase.
• The lookup table in the linking module’s .told section is

updated according to α to point to the new basic block locations.
Once the initialization is complete, the .tnew section is assigned
the same access permissions as the original program’s .text sec-
tion. This preserves non-writability of code employing W⊕X pro-
tections.

To further minimize the attack surface, the library is designed
to have as few return instructions as possible. The majority of
the library that implements stirring is loaded dynamically into the
address space at library initialization and then unloaded before the
stirred binary runs. Thus, it is completely unavailable to attackers.
The remainder of the library that stays resident performs small
bookkeeping operations, such as callback support (see §3.4). It
contains less than 5 return instructions total.

3.3 An Example
To illustrate our technique, Fig. 4 shows the disassembly of a

part of the original binary’s .text section and its counterparts in
the rewritten binary’s .told and .tnew sections after passing
through the static and load-time phases described above.

The disassembly of the .text section shows two potential com-
puted jump targets, at addresses 0x404B00 and 0x404B18, that each
correspond to a basic block entry point. In the rewritten .told
section, the underlined values show how each is overwritten with the
tag byte 0xF4 followed by the 4-byte pointer α(t) that represents
its new location in the .tnew section.2 All remaining bytes from
the original code section are left unchanged (though the section is
2This value changes during each load-time stirring.

Original .text:
.text:00404AF0 00 4B 40 00 .dword 00404B00h
.text:00404AF4 18 4B 40 00 .dword 00404B18h
.text:00404AF8 CC (×8) .align 16
.text:00404B00 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]
.text:00404B07 FF E1 jmp eax
.text:00404B09 CC CC CC CC CC CC CC .align 16
.text:00404B10 55 push ebp
.text:00404B11 8B E5 mov esp, ebp
.text:00404B13 C3 retn
.text:00404B14 CC CC CC CC .align 8
.text:00404B18 55 push ebp
.text:00404B19 83 F8 01 cmp eax, 1
.text:00404B1C 7D 02 jge 404B20h
.text:00404B1E 33 C0 xor eax, eax
.text:00404B20 8B C1 mov eax, ecx
.text:00404B22 E8 D9 FF FF FF call 404B00h

STIRred .told (Jump Table):
.told:00404AF0 00 4B 40 00 18 4B 40 00
.told:00404AF8 CC CC CC CC CC CC CC CC
.told:00404B00 F4 4C 23 51 00 40 00 FF
.told:00404B08 E1 CC CC CC CC CC CC CC
.told:00404B10 55 8B E5 C3 CC CC CC CC
.told:00404B18 F4 12 5B 52 00 02 33 C0
.told:00404B20 8B C1 E8 D9 FF FF FF

STIRred .tnew:
.tnew:0051234C 8B 04 85 F0 4A 40 00 mov eax,[eax*4+404AF0h]
.tnew:00512353 80 38 F4 cmp F4h, [eax]
.tnew:00512356 0F 44 40 01 cmov eax, [eax+1]
.tnew:0051235A FF E1 jmp eax

. . . (other basic blocks) . . .
.tnew:00525B12 55 push ebp
.tnew:00525B13 83 F8 01 cmp eax, 1
.tnew:00525B16 0F 8D 00 00 00 02 jge 525B1Eh
.tnew:00525B1C 33 C0 xor eax, eax
.tnew:00525B1E 8B C1 mov eax, ecx
.tnew:00525B20 E8 27 C8 FE FF call 51234C

. . . (other basic blocks) . . .
.tnew:0053AF21 55 push ebp
.tnew:0053AF22 8B E5 mov esp, ebp
.tnew:0053AF24 C3 retn

Figure 4: A stirring example

set non-executable) to ensure that any data misclassified as code is
still accessible to instructions that may refer to it.

The .tnew section contains the duplicated code after stirring.
Basic blocks 0x404B00, 0x404B10 and 0x404B18, which were
previously adjacent, are relocated to randomly chosen positions
0x51234C, 0x53AF21 and 0x525B12 (respectively) within the new
code section. Non-branch instructions are duplicated as is, but static
branches are re-targeted to the new locations of their destinations.
Additionally, as address 0x525B16 shows, branch instructions are
conservatively translated to their longest encodings to accommodate
their more distant new targets.

3.4 Special Cases
Real-world x86 COTS binaries generated by arbitrary compilers

have some obscure features, some of which required us to implement
special extensions to our framework to support them. In this section
we describe the major ones and our solutions.

3.4.1 Callbacks
Real-world OS’s—especially Windows—make copious use of

callbacks for event-driven programming. User code solicits call-
backs by passing code pointers to a callback registration function
exported by the system. The supplied pointers are later invoked
by the OS in response to events of interest, such as mouse clicks
or timer interrupts. Our approach of dynamically re-pointing stale



Original:
.text:0804894B E8 00 00 00 00 call 08048950h
.text:08048950 5B pop ebx
.text:08048951 81 C3 A4 56 00 00 add ebx, 56A4h
.text:08048957 8B 93 F8 FF FF FF mov edx, [ebx-8]

Rewritten:
.tnew:0804F007 E8 00 00 00 00 call 0804F00Ch
.tnew:0804F00C 5B pop ebx
.tnew:0804F00D BB F4 DF 04 08 mov ebx, 0804DFF4h
.tnew:0804F012 90 nop
.tnew:0804F013 8B 93 F8 FF FF FF mov edx, [ebx-8]

Figure 5: Position-independent code

pointers at the sites of dynamic calls does not work when the call site
is located within an unstirred binary, such as an OS kernel module.

To compensate, our helper library hooks [30] all import address
table entries of known callback registration functions exported by
unstirred modules. The hooks re-point all calls to these functions
to a helper library that first identifies and corrects any stale pointer
arguments before passing control on to the system function. This
interposition ensures that the OS receives correct pointer arguments
that do not point into the old code section.

3.4.2 Position Independent Code
PIC instructions compute their own address at runtime and per-

form pointer arithmetic to locate other instructions and data tables
within the section. An underlying assumption behind this implemen-
tation is that even though the absolute positions of these instructions
in the virtual address space may change, their position relative to
one another does not. This assumption is violated by stirring, neces-
sitating a specialized solution.

All PIC that we encountered in our experiments had the form
shown in the first half of Fig. 5. The call instruction has the effect of
pushing the address of the following instruction onto the stack and
falling through to it. The following instruction pops this address into
a register, thereby computing its own address. Later this address
flows into a computation that uses it to find the base address of a
global offset table at the end of the section. In the example, constant
56A4h is the compile-time distance from the beginning of the pop
instruction to the start of the global offset table.

To support PIC, our rewriter identifies call instructions with op-
erands of 0 and performs a simple data-flow analysis to identify
instructions that use the pushed address in an arithmetic computa-
tion. It then replaces the computation with an instruction sequence
of the same length that loads the desired address from the STIR
system tables. This allows the STIR system to maintain position
independence of the code across stirring. In Fig. 5, the nop instruc-
tion is added to ensure that the length matches that of the replaced
computation.

Our analysis is not guaranteed to find all possible forms of PIC.
For example, PIC that uses some other instruction to compute its
address, or that allows the resulting address to flow through the heap
before use, would defeat our analysis, causing the rewritten binary
to crash at runtime. However, our analysis sufficed to support all
PIC instances that we encountered, and compiler documentation of
PIC standards indicates that there is only a very limited range of
PIC implementations that needs to be supported [42].

3.4.3 Statically Computed Returns
Although returns are technically computed jumps (because they

draw their destinations from the stack), our rewriting algorithm does
not guard them with checks for stale pointers. This is a performance

Original .text: Jump table .told:

2
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lo
st func_1: func_1:

.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E

.text:40EAAB C3 retn .text:40EAAB 04
func_2: func_2:
.text:40EAAC 50 push eax .text:40EAAC F4

0
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func_1: func_1:
.text:40EAA9 33 C0 xor eax, eax .text:40EAA9 F4 2E
.text:40EAAB 5B pop ebx .text:40EAAB 25
.text:40EAAC 5E pop esi .text:40EAAC 42
.text:40EAAD C3 retn .text:40EAAD 00
func_2: func_2:
.text:40EAAE 50 push eax .text:40EAAE F4

Figure 6: Overlapping function pointers

optimization that assumes that all return addresses are pushed onto
the stack by calls; thus, no return addresses are stale.

This assumption was met by all binaries we studied except for a
certain pattern of initializer code generated by GNU Compilers. The
code sequence in question pushes three immediate operands onto
the stack, which later flow to returns. We supported this by treating
those three instructions as a special case, augmenting them with
stale pointer checks that correct them at the time they are pushed
instead of at the time they are used. A more general solution could
rewrite all return instructions with stale pointer guards, probably at
the cost of performance.

3.4.4 Short Functions
Our jump table implementation overwrites each computed jump

target with a 5-byte tagged pointer. This design assumes that nearby
computed jump targets are at least 5 bytes apart; otherwise the
two pointers must overlap. An example of this type of jump table
collision is shown in Fig. 6, where the first row has two jump table
destinations overlapping two bytes of each other, and the second row
does not overlap at all. Such closely packed destinations are rare,
since most computed jump destinations are already 16-byte aligned
for performance reasons, and since all binaries compatible with
hot-patching technology have at least 5 bytes of padding between
consecutive function entry points (enough to encode a long jump
instruction) [32].

In the rare case that two computed jump targets are closer, the
rewriter strategically chooses stirred block addresses within the new
code section whose pointer representations can safely overlap. For
example, if the .tnew section is based at address 0x04000000,
the byte sequence F4 00 F4 00 04 00 04 encodes two overlapping,
little-endian, tagged pointers to basic block addresses 0x0400F400
and 0x04000400, respectively. This strategy suffices to support
at least 135 two-pointer collisions and 9 three-pointer collisions
per rewritten code page—far more than we saw in any binary we
studied.

4. EMPIRICAL EVALUATION

4.1 Effectiveness

4.1.1 Rewriting Time and Space Overheads
To evaluate the effectiveness of our system, we tested both the

Windows and Linux versions of STIR with a variety of COTS and
benchmark binaries. Both Windows and Linux tests were carried
out on Windows 7 and Ubuntu 12 running on an Intel Core i5 dual
core, 2.67GHz laptop with 4GB of physical RAM.

On Windows, we tested STIR against the SPEC CPU 2000 bench-
mark suite as well as popular applications like Notepad++ and
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Figure 7: Static rewriting times and size increases

Table 1: Linux test programs grouped by type and size
Group Sizes (KB) Programs
File_1 17–37 dircolors, ln, mkdir, mkfifo, mknod,

mktemp, rmdir, sync
File_2 41–45 chgrp, chmod, chown, dd, rm, shred,

touch, truncate
File_3 49–97 chcon, cp, df, dir, install, ls, mv, vdir

Text_1 21–25 base64, cksum, comm, expand, fmt,
fold, paste, unexpand

Text_2 25–29 cut, join, md5sum, nl, sha1sum, shuf,
tac, tsort

Text_3 29–37 cat, csplit, head, sha224sum, sum, tr,
uniq, wc

Text_4 37–89 od, pr, ptx, sha256sum, sha384sum,
sha512sum, sort, split, tail

Shell_1 5–17 basename, dirname, env, false,
hostid, link, logname, uptime

Shell_2 17–21 arch, echo, printenv, true, tty, unlink,
whoami, yes

Shell_3 21 group, id, nice, noshup, pathchk,
pwd, runcon, sleep

Shell_4 21–29 chroot, expr, factor, pinky, readlink,
tee, test, uname, users

Shell_5 30–85 date, du, printf, seq, stat, stty, su,
timeout, who

DosBox. For the Linux version, we evaluated our system against the
99 binaries in the coreutils toolchain (v7.0) for the Linux version.
Due to space limitations, figures only present Windows binaries and
a selection of 10 Linux binaries. In all of our tests, stirred binaries
exhibited the same behavior and output as their original counter-
parts. Average overheads only cover binaries that run for more than
500ms.

Figure 7 shows how the rewriting phase affects the file size and
code section sizes of each binary, which increase on average by 73%
and 3% respectively. However, runtime process sizes increase by
only 37% on average, with the majority of the increase due to the
additional library that is loaded into memory. Our current helper
library implementation makes no attempt to conserve its virtual
memory allocations, so we believe that process sizes can be further
reduced in future development. Occasionally our disassembler is
able to safely exclude large sections of static data from rewritten
code sections, leading to decreased code sizes. For example, mesa’s
code section decreases by more than 15%. On average, static rewrit-
ing of Windows binaries requires 45 seconds per megabyte of code
sections, whereas Linux binaries require 31 seconds per megabyte.
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Figure 8: Gadget reduction for Windows binaries

Linux filenames in Fig. 7 are grouped by type (File, Text, and
Shell) and by program size due to the large number of programs.
Table 1 lists the programs in each group.

4.1.2 Gadget Elimination
One means of evaluating ROP attack protection is to count the

number of gadgets that remain after securing each binary. There are
several tools available for such evaluation, including Mona [20] on
Windows and RoPGadget [48] on Linux. We used Mona to evaluate
the stirred Windows SPEC2000 benchmark programs. Mona reports
the number of gadgets the binary contains after the load-time phase
is complete. We define a gadget as unusable if it is no longer at
the same virtual address after basic block randomization. Figure 8
shows that on average STIR causes 99.99% of gadgets to become
unusable. The only gadgets that remain after randomization of
the test programs consist of a pop and a retn instruction that
happened to fall onto the same address. Most malware payloads are
not expressible with such primitive gadgets to our knowledge.

We also applied the Q exploit hardening system [50] to evaluate
the effectiveness of our system. Since Q is a purely static gadget
detection and attack payload generation tool, running Q dynamically
after a binary has been stirred is not possible. Instead, we ran Q on
a number of Linux binaries (viz., rsync, opendchub, gv, and proftpd)
to generate a payload, and then ran a script that began execution
of the stirred binary, testing each of the gadgets Q selected for its
payload after randomization. Attacks whose gadgets all remained
usable after stirring were deemed successful; otherwise, Q’s payload
fails. In our experiments, no payload generated by Q was able to
succeed against STIR.

4.2 Performance Overhead
Runtime performance statistics for Windows and Linux binaries

are shown in Figs. 9 and 10, respectively, with each bar reflecting the
application’s median overhead over 20 trials. The median overhead
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Figure 10: Runtime overheads for Linux binaries

is 4.6% for Windows applications, 0.3% for Linux applications, and
1.6% overall.

To isolate the effects of caching, Fig. 10 additionally reports the
runtime overhead (discounting startup and initialization time) of
unstirred Linux binaries, in which the load-time stirring phase was
replaced by a loop that touches each original code byte without
rewriting it, and then runs this unmodified, original code. This
potentially has the effect of pre-fetching some or all of the code into
the cache, decreasing some runtimes (although, as the figure shows,
in practice the results are not consistent). Stirred binaries exhibit a
median overhead of 1.2% over unstirred ones.

Amongst the Windows binaries, the gap SPEC2000 benchmark
program consistently returns the worst overhead of 35%. This may
be due to excessive numbers of callback functions or computed
jumps. In contrast, the parser benchmark actually increases in
speed by 5%. We speculate that this is due to improved locality
resulting from separation of static data from the code (at the expense
of increased process size). On average, the SPEC2000 benchmarks
exhibit an overhead increase of 6.6%.

We do not present any runtime information for DosBox and
Notepad++, since both are user-interactive. We did, however, manu-
ally confirm that all program features remain functional after trans-
formation, and no performance degradation is observable.

To separate the load-time overhead of the stirring phase from the
rest of the runtime overhead, Fig. 11 plots the stirring time against
the code size. As expected, the graph shows that the increase in
load-times is roughly linear with respect to code sizes, requiring
1.37ms of load-time stirring per KB of code on average.

For the most part, none of our tests require manual intervention
by the user; all are fully automatic. The only exception to this is
that IDA Pro’s disassembly of each SPEC2000 benchmark program
contained exactly two identical errors due to a known bug in its
control-flow analysis heuristic. We manually corrected these two
errors in each case before proceeding with static rewriting.
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Figure 11: Load-time overhead vs. code size

5. DISCUSSION
In this section we first examine the entropy of our randomization,

and then discuss limitations of STIR and propose future work.

5.1 Randomization Entropy
Our threat model assumes that attackers do not have unrestricted

read access to process address spaces. (Such powerful access renders
address randomization defenses ineffective.) Under this assumption,
the search space that an attacker must explore to defeat STIR is
much larger than for ASLR (including 64-bit ASLR and PIE [24])
because even the relative locations of gadgets within sections are
randomized by STIR.

For example, past work concludes that a brute force attack against
an exploitable Apache web server equipped with standard (fixed)
PaX ASLR requires an expected 2n/2 = 2n−1 probes for suc-
cess, where n is the number of bits of randomness in the address
space [52]. Re-randomizing ASLR doubles this to 2n expected
probes. However, STIR increases this to an expected (2n)!/(2(2n−
g)!) probes even without re-randomization, where g is the number
of gadgets in the payload, since each probe must independently
guess the positions of all g gadgets. On a 64-bit architecture with
14-bit aligned pages and 1 bit reserved for the kernel (i.e., n = 50),
the expected number of probes for a g=3-gadget attack is therefore
over 7.92× 1028 (≈ 249248/2) times greater with STIR than with
re-randomizing ASLR.

Brute force attacks that defeat ASLR by randomly guessing gad-
get locations over many trials [52] or using the location of one
binary feature to infer the locations of others [46] therefore fail
when applied to STIR. Runtime re-stirring could enlarge the search
space even further; this is an avenue of future work (see §5.2).

The entropy of our randomization procedure is a function of the
average basic block size of each binary relative to the size of the code
section in which it resides. STIR also chooses random, independent
base addresses for the new code section(s) and lookup table(s). This
level of entropy is sufficient to render almost all gadgets unusable in
our tests, but more cautious users may wish to increase the entropy
further. To do so, STIR could be extended to pad rewritten code
sections with random, unreachable instruction sequences that do not
contain returns or jumps. This extra information would increase
the number of basic blocks and decrease their relative size, thus
increasing the entropy of the system.

5.2 Limitations and Future Work
STIR currently only randomizes code available at load time; code

generated at runtime is not stirred. Thus, obfuscated code that
unpacks itself at runtime derives little benefit from STIR, since the
unpacked code is never randomized. Similarly, JIT-compiled code
that is generated at runtime remains unrandomized (although the



static JIT compiler is randomized by STIR). Periodically re-stirring
stir-enabled binaries at runtime could help protect runtime-generated
code, but is difficult to realize in practice because it introduces new,
more complex varieties of stale pointers for each round of stirring.
Implementing a runtime re-stirring system is therefore reserved as a
subject of future work.

Our present work focuses on randomizing application main mod-
ules rather than libraries because library randomization is a less
pressing concern (since libraries already benefit from ASLR ran-
domization) and is significantly easier to realize (since almost all
libraries support rebasing, and therefore contain relocation infor-
mation). Our current implementation therefore only randomizes
application main modules, not Windows DLLs or Linux shared
objects (SOs). However, library stirring is not difficult to add. It
merely requires the implementation of a custom loader that adjusts
export address tables of stirred libraries after stirring but before dy-
namic linking. This is a conceptually easy extension that we intend
to undertake in the future.

The experiments reported in §4 divide basic blocks at uncondi-
tional jump instructions already present in the original code. How-
ever, STIR can divide basic blocks at any instruction boundary
by inserting jumps that explicitly fall through (i.e., jmp 0). This
increases the entropy by partitioning the code into smaller, more
numerous basic blocks. It also has the benefit of breaking (rather
than merely relocating) ROP gadgets that rely on aliased instruction
sequences whose encodings span the encodings of adjacent instruc-
tions in the application programming. Relocating the instructions
so that they are non-adjacent breaks such a gadget. The tradeoff
is increased code size (due to the new instructions) and increased
runtime overhead (due to the larger number of jumps). Whether this
tradeoff is worthwhile is an open question that should be investigated
by future work.

Although our randomization strategy defeats typical ROP attacks
that chain gadgets, it does not protect against control-flow hijacking
attacks that simply call a legitimate computed jump target (e.g.,
an original method) with corrupted arguments. STIR’s address
translation logic permits such jumps because it detects and re-points
stale pointers to legitimate computed jump targets at runtime. At
the binary level, there is little that distinguishes a non-corrupted
but stale pointer to such a method (e.g., one drawn from a method
dispatch table) from one created by an attacker. Blocking these
attacks requires a more refined control-flow integrity policy that
dictates exactly which computed jumps may target which methods
(cf., [1]). Reliably extracting such information from legacy binaries
is a difficult open problem.

As mentioned in §3.4.1, our system requires a list of all callback
registration functions in unstirred libraries. While the callback
registration functions exported by system libraries are theoretically
well documented parts of the public system API, in practice we have
found that some are less than well documented. For example, some
compilers generate calls to internal Windows libc functions for
which we could find no documentation in any reference manual.
To determine the signatures of these callees we were forced to
disassemble and reverse-engineer the system modules that contain
them. Maintaining a complete list of callback registration functions
for a large OS can therefore be challenging when the system API
documentation is incorrect or incomplete.

6. RELATED WORK

6.1 Security through Randomization
Forrest et al. [26] have suggested that monoculture is one of the

main reasons why computers are vulnerable to large-scale, repeat-

able attacks including the most recent robust ROP shell codes [50].
As such, randomization has been introduced to increase the diversity
of software. This strategy has been widely instantiated in existing
works, such as ASLR [9, 10, 45], instruction set randomization
(ISR) [5], data randomization [8, 14, 21], OS interface randomiza-
tion [19], and multi-variant systems [11, 22, 47].

Address Space Layout Randomization: ASLR is a practical tech-
nique that has been adopted by many modern OSes such as Win-
dows and Linux. The goal of ASLR is to obscure the location of
code and data objects that are resident in memory, including the
addresses of the program stack, heap, and shared library code [9,
10, 45, 60]. ASLR is currently implemented through modifying
the OS kernel [45], system loader [60], and application source or
binary code [9, 10]. However, all of these approaches require source
code information (e.g., debug symbols or relocation data) in order to
randomize the instruction addresses of most main modules. This mo-
tivates our work, which extends instruction address randomization
to the majority of legacy main modules that lack such information.

In addition, existing source-agnostic ASLR approaches are lim-
ited to randomizations of relatively low granularity, leaving them
vulnerable to derandomization attacks that can succeed even when
the address space is large [46]. For example, ASLR can relocate and
reorder some sections as wholes, but not the relative positions of the
binary features within the sections. This leaves them vulnerable to
attacks that reliably infer the relative positions of vulnerable code
features irrespective of the size of the address space. In contrast,
STIR randomizes the relative positions of such features, defeating
such attacks.

Instruction Set Randomization: ISR is an approach to prevent
code injection attacks by randomizing the underlying system in-
structions [5, 34]. In this approach, instructions are encrypted with
a set of random keys and then decrypted before being fetched and
executed by the CPU. ISR is effective for preventing code injections
but cannot prevent ROP attacks. The technique is also hard to deploy
in practice, requiring encryption of any supported software.

Data Randomization: As a dual to ISR, program data can also
be encrypted and decrypted. PointGuard [21] encrypts all pointers
while they reside in memory and decrypts them only before they
are loaded into CPU registers. Recent work has presented a new
data randomization technique that provides probabilistic protection
against memory exploits by XORing data with random masks [8, 14].
DSR can help to prevent ROP attacks by decrypting attacker-injected
code pointers to random addresses. However, data randomization
requires recompilation of programs, which hinders its practicality.

OS Interface Randomization: System call mappings, global li-
brary entry points, and stack placement can all be randomized to
mitigate buffer overflow attacks by increasing the heterogeneity of
computer systems [19]. Similarly, RandSys [33] combines ASLR
and ISR to randomize the system service interface when loading
a program, and de-randomizes the instrumented interface for the
correct execution at runtime. Similar to ISR, OS interface random-
ization cannot prevent ROP attacks in which all the attack code is
drawn from the existing content of the victim address space.

Multi-variant Systems: Our work is also related to N-variant sys-
tems [11, 22, 47], which likewise leverage diversification to improve
security. N-variant is an architectural framework that employs a set
of automatically diversified variants to execute a common task. Any
divergence among the outputs raises an alarm and can hence detect
the attack. DieHard [7] is a simplified multi-variant framework that
uses heap object randomization to make the variants generate differ-



ent outputs in case of error or attack. Exterminator [40] extends this
idea to derive runtime patches and automatically fix program bugs.
Multi-variant systems frustrate ROP attacks by forcing the attacker
to simultaneously subvert all the running variants, but require source
code information in order to successfully apply comprehensive,
semantics-preserving diversification of large applications.

6.2 ROP Defenses
In addition to diversification defenses, there are other techniques

that specifically target ROP attacks. DROP [17] instruments pro-
gram binary code and monitors the frequency of return instructions,
which tend to rise during ROP attacks that rely heavily upon stack
pointers to hijack control-flows. While DROP has been shown
to be effective for ROP shell code detection, it suffers up to 5x
performance overhead on average.

ROPdefender [23] is another binary instrumentation-based tech-
nique, which duplicates return addresses on a shadow stack and
further evaluates each return instruction during program execution
to detect mismatched calls and returns. ROPdefender is quite effec-
tive, and unlike DROP it only introduces 2x performance overhead.
Other defenses, such as return-less kernels [38] and gadget-less
binaries [41], eliminate return instructions during compilation.

There are also two compiler-based approaches to defeating ROP
attacks. G-Free [41] removes gadgets from program binaries at
compile time by eliminating all unaligned free-branch instructions
and protecting the remaining aligned free-branch instructions. The
other compiler approach generates return-less code by removing the
ret opcode to prevent gadget formation [38].

Most recently, IPR [44] and ILR [29] have been proposed to
alleviate the problem of ROP attacks. IPR uses in-place code ran-
domization and instruction replacement to eliminate gadgets. Since
its transformations are strictly in-place, it can only eliminate gadgets
for which a semantics-preserving, size-invariant code transformation
can be found. On average, 77% of gadgets meet this requirement,
and can therefore be eliminated or broken by the technique. How-
ever, with large binaries that contain more than 100K gadgets, this
is not enough to ensure secure execution. Also, IPR is difficult to
deploy since each randomized application copy must be separately
distributed.

ILR adopts a highly dynamic approach that first statically ran-
domizes most instruction addresses and then dynamically guides
control-flows through the randomized layout at runtime using a
VM equipped with a fall-through map. However, like IPR, it is
unable to move all instructions (mainly due to indirect branches),
and therefore consistently preserves the locations of some gadgets.
In addition, its dependence on a VM inevitably leads to higher
performance overheads than purely static approaches.

STIR is orthogonal and complementary to these techniques in that
it can be transparently applied to legacy code without code-producer
cooperation.

6.3 Binary Rewriting
Static Approaches: Static binary rewriting is a core technology
for many applications, such as software fault isolation [58], static
instrumentation, in-lined reference monitoring [49], and tamper-
proofing [3]. There are a large body of rewriting techniques, in-
cluding PittsField [39], Google Native Client [61], and Diablo [56].
Their rewriting techniques typically target the assembly code yielded
by a specific compiler with specific compiler options (e.g., [25, 39,
53, 58, 61]) or type-safe byte-code languages (e.g., [2, 6, 16]).

However, most static binary rewriters make strong assumptions
about target binaries in order to successfully preserve their behavior.
In contrast, STIR is compiler-agnostic, requires no relocation or

debugging information, and has no reliance on symbol stores. This
is important for practical applicability since most COTS legacy
binaries lack this information.

SecondWrite [54] is the only other static binary rewriting system
to our knowledge that targets COTS native code without relocation
information. However, it is unsuitable for ROP protection because
its rewriting algorithm must retain an executable copy of the original
code in every rewritten binary, preserving gadgets. In addition, it
is not yet mature enough to rewrite large real-world commercial
applications; published experiments are currently limited to small,
gcc-compiled programs [43].

Dynamic Approaches: Dynamic binary instrumentation is another
approach to mitigating ROP attacks. Systems such as DynInst [31]
and program shepherding [35] have the potential to intercept, ana-
lyze, and modify instructions at runtime to remove or modify the
locations of gadgets, if extended with some form of basic block
randomization.

However, as demonstrated by DROP [17] and ROPdefender [23],
these systems tend to exhibit significantly higher overheads. STIR
inlines the analysis necessary for basic block randomization, whereas
dynamic instrumentation defers much of this analysis to computa-
tionally expensive runtime context switches between the application
and the VM. For example, DynInst and DynamoRIO [18] exhibit
10–160x overhead and 30% overhead, respectively [18, 36].

7. CONCLUSION
We have presented STIR, a system that imbues legacy x86 bi-

naries with self-randomizing instruction addresses. The system
supports COTS binaries for both Windows and Linux, including
those with dynamically computed jumps, code-data interleaving,
OS callbacks, dynamic linking, and imperfect disassemblies. The
system is compiler-agnostic and requires no form of code-producer
cooperation. We have devised and implemented an array of novel
techniques to address these challenges. Our evaluation shows that
STIR can randomize a large body of large-scale, legacy x86 code,
introducing about 1.6% runtime overhead on average to randomized
applications.
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